Algebra II
11-6
pg 533

1	48	9	$\frac{9}{2}(\sqrt{3}-1) \approx 3.294$
2	16	10	$\frac{2}{3}$
3	$\frac{81}{5}=16.2$	11	4
4	81	12	$\frac{2}{3}$
5	no sum (∞)	23	$8+\frac{8}{3}+\frac{8}{9}+\cdots$
6	2500	24	$40+32+25.6+\cdots$
7	$n 0$ sum (∞)	25	$40-\frac{40}{3}+\frac{40}{9} \cdots \cdots$
8	$\frac{3}{10}$	26	$75+30+12+\cdots$

3) $27-18+12-8$

$$
\begin{aligned}
& r=\frac{a_{2}}{a_{1}}=\frac{-18}{27}=-\frac{2}{3} \\
& S_{\infty}=\frac{a_{1}}{1-r}=\frac{27}{\frac{3}{3}-\left(-\frac{2}{3}\right)} \\
& =\frac{27}{\frac{5}{3}}=\frac{27}{1} \frac{3}{5}=\frac{81}{5}
\end{aligned}
$$

$$
\text { 9) } \begin{aligned}
& 3 \sqrt{3}-3+\sqrt{3}-1 \quad r=\frac{a_{2}}{a_{1}}=\frac{-3}{3 \sqrt{3}}=-\frac{1 \sqrt{3}}{\sqrt{3} \sqrt{3}}=-\frac{\sqrt{3}}{3} \\
S_{\infty} & =\frac{a_{1}}{1-r}=\frac{3 \sqrt{3}}{1-\left(-\frac{\sqrt{3}}{3}\right)}=\frac{3 \sqrt{3}}{\frac{3}{3}+\frac{\sqrt{3}}{3}}=\frac{3 \sqrt{3}}{\frac{3+\sqrt{3}}{3}}=\frac{3 \sqrt{3}}{1} \cdot \frac{3}{3+\sqrt{3}}=\frac{(9 \sqrt{3})(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})} \\
& =\frac{9 \sqrt{3}(3-\sqrt{3})}{9-3}=\frac{9(3 \sqrt{3}-3)}{6}=\frac{27(\sqrt{3}-1)}{6}=\frac{9(\sqrt{3}-1)}{2}
\end{aligned}
$$

Alternate version (calculator)
9)

$$
\begin{aligned}
& 3 \sqrt{3}-3+\sqrt{3}-1+\cdots \\
& r=\frac{-3}{3 \sqrt{3}}=\frac{-1}{\sqrt{3}} \\
& \left.S_{\infty}=\frac{a_{1}}{1-r}=\frac{3 \sqrt{3}}{1-\left(-\frac{1}{\sqrt{3}}\right)}=3 \sqrt{(3)} \div(1+1 \div \sqrt{(3)})\right)
\end{aligned}
$$

When you use a calculator, make sure you close the parentheses!
10) $4^{-\frac{1}{2}}+4^{-\frac{3}{2}}+4^{-\frac{5}{2}}+\cdots$

$$
\begin{aligned}
& r=\frac{a_{2}}{a_{1}}=\frac{4^{-\frac{3}{2}}}{4^{\frac{-1}{2}}}=\frac{4^{\frac{1}{2}}}{4^{\frac{3}{2}}}=4^{-\frac{2}{2}}=4^{-1}=\frac{1}{4} \\
& S_{\infty}=\frac{4^{-\frac{1}{2}}}{1-\frac{1}{4}}=\frac{4^{\frac{1}{2}}}{\frac{3}{4}}=\frac{1}{2}=\frac{1}{4}=\frac{4}{4}=\frac{2}{3}
\end{aligned}
$$

12)

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{2^{n}}{5^{n}}= \frac{2^{1}}{5^{1}}+\frac{2^{2}}{5^{2}}+\frac{2^{3}}{5^{3}}+\cdots \\
& a_{1} a_{2} a_{3} \\
& \frac{2}{5}+\frac{4}{25}+\frac{8}{125}+\cdots
\end{aligned}
$$

At the time, I had not taught logarithms or fractional exponents, thus students needed to use the calculator to evaluate - four to the negative half power.

